二零一零年教材上新增添了差不离17篇随笔,词汇选项,阅读推断, 回顾大体完毕句子,
阅读精通, 补全短文, 完型填空种种题型上都有新添小说。
理工科类和卫生类新扩张的著作更反映专门的学业性。新添小说的语言难度和难题考试之处设置情状在任其自流水平上彰显了08年考题的出题倾向。

Let’s imagine a sculptor building a statue, just chipping away with his
chisel. Michelangelo had this elegant way of describing it when he said,
“Every block of stone has a statue inside of it, and it’s the task of
the sculptor to discover it.” But what if he worked in the opposite
direction? Not from a solid block of stone, but from a pile of dust,
somehow gluing millions of these particles together to form a statue.

(难度B/A级/2009年理工科类教材新扩展小说卡塔尔

I know that’s an absurd notion. It’s probably impossible. The only way
you get a statue from a pile of dust is if the statue built itself — if
somehow we could compel millions of these particles to come together to
form the statue.

The Tiniest Electric Motor in the World

Now, as odd as that sounds, that is almost exactly the problem I work on
in my lab. I don’t build with stone, I build with nanomaterials. They’re
these just impossibly small, fascinating little objects. They’re so
small that if this controller was a nanoparticle, a human hair would be
the size of this entire room. And they’re at the heart of a field we
call nanotechnology, which I’m sure we’ve all heard about, and we’ve all
heard how it is going to change everything.

  1. Scientists recently made public the tiniest electric motor ever
    built. You could stuff hundreds of them into the period at the end of
    this sentence. One day a similar engine might power a tiny mechanical
    doctor that would travel through your body to remove your disease.

  2. The motor works by shuffling(来回运动) atoms(原子) between two
    molten metal droplets(小滴) in a carbon nanotube(皮米管). One
    droplet is even smaller than the other. When a small electric current is
    applied to the droplets, atoms slowly get out of the larger droplet and
    join the smaller one. The small droplet grows – but never gets as big as
    the other droplet – and eventually bumps into the large droplet. As they
    touch, the large droplet rapidly sops up (吸入)the atoms it had
    previously lost. This quick shift in energy produces a power
    stroke(引力路程).

  3. The technique exploits the fact that surface tension — the tendency
    of atoms or molecules to resist separating — becomes more important at
    small scales. Surface tension is the same thing that allows some insects
    to walk on water.

  4. Although the amount of energy produced is small — 20
    microwatts(百相当之风华正茂瓦) — it is quite impressive(给人影象浓郁的)
    in relation to(与…比较) the tiny scale of the motor. The whole setup
    is less than 200 nanometers on a side, or hundreds of times smaller than
    the width of a human hair. If it could be scaled up to the size of an
    automobile engine, it would be 100 million times more powerful than a
    Toyota Gran Lavida’s 225 horsepower V6 engine.

  5. In 一九九零, Professor Richard Muller and colleagues made the first
    operating(职业的, 运维的) micromotor(微型斯特林发动机), which was 100
    microns(微米) across, or about the thickness of a human hair. In 二〇〇四,
    Zettl’s group created the first nanoscale motor. In 二〇〇五, they built a
    nanoconveyor(皮米传送带), which moves tiny particles along like cars
    in a factory.

  6. Nanotechnology(飞米手艺) engineers try to mimic nature, building
    things atom-by-atom. Among other things, nanomotors could be used in
    optical circuits to redirect light, a process called optical switching.
    Futurists envision(预想) a day when nanomachines(微米机器), powered
    by nanomotors(皮米引擎), travel inside your body to find disease and
    repair damaged cells.

When I was a graduate student, it was one of the most exciting times to
be working in nanotechnology. There were scientific breakthroughs
happening all the time. The conferences were buzzing, there was tons of
money pouring in from funding agencies. And the reason is when objects
get really small, they’re governed by a different set of physics that
govern ordinary objects, like the ones we interact with. We call this
physics quantum mechanics. And what it tells you is that you can
precisely tune their behavior just by making seemingly small changes to
them, like adding or removing a handful of atoms, or twisting the
material. It’s like this ultimate toolkit. You really felt empowered;
you felt like you could make anything.

练习:

And we were doing it — and by we I mean my whole generation of graduate
students. We were trying to make blazing fast computers using
nanomaterials. We were constructing quantum dots that could one day go
in your body and find and fight disease. There were even groups trying
to make an elevator to space using carbon nanotubes. You can look that
up, that’s true. Anyways, we thought it was going to affect all parts of
science and technology, from computing to medicine. And I have to admit,
I drank all of the Kool-Aid. I mean, every last drop.

  1. Paragraph 2

  2. Paragraph 4

  3. Paragraph 5

  4. Paragraph 6

But that was 15 years ago, and — fantastic science was done, really
important work. We’ve learned a lot. We were never able to translate
that science into new technologies — into technologies that could
actually impact people. And the reason is, these nanomaterials —
they’re like a double-edged sword. The same thing that makes them so
interesting — their small size — also makes them impossible to work
with. It’s literally like trying to build a statue out of a pile of
dust. And we just don’t have the tools that are small enough to work
with them. But even if we did, it wouldn’t really matter, because we
couldn’t one by one place millions of particles together to build a
technology. So because of that, all of the promise and all of the
excitement has remained just that: promise and excitement. We don’t have
any disease-fighting nanobots, there’s no elevators to space, and the
thing that I’m most interested in, no new types of computing.

A An introduction of a Toyota’s 225 horsepower V6 engine.

Now that last one, that’s a really important one. We just have come to
expect the pace of computing advancements to go on indefinitely. We’ve
built entire economies on this idea. And this pace exists because of our
ability to pack more and more devices onto a computer chip. And as those
devices get smaller, they get faster, they consume less power and they
get cheaper. And it’s this convergence that gives us this incredible
pace.

B A description of the nanomotor in terms of power and size.

As an example: if I took the room-sized computer that sent three men to
the moon and back and somehow compressed it — compressed the world’s
greatest computer of its day, so it was the same size as your smartphone
— your actual smartphone, that thing you spent 300 bucks on and just
toss out every two years, would blow this thing away. You would not be
impressed. It couldn’t do anything that your smartphone does. It would
be slow, you couldn’t put any of your stuff on it, you could possibly
get through the first two minutes of a “Walking Dead” episode if you’re
lucky —

C [u]Surface tension[/u](表面蒋哲).

(Laughter)

D Previous inventions of nanoscale(飞米级的) products.

The point is the progress — it’s not gradual. The progress is
relentless. It’s exponential. It compounds on itself year after year, to
the point where if you compare a technology from one generation to the
next, they’re almost unrecognizable. And we owe it to ourselves to keep
this progress going. We want to say the same thing 10, 20, 30 years from
now: look what we’ve done over the last 30 years. Yet we know this
progress may not last forever. In fact, the party’s kind of winding
down. It’s like “last call for alcohol,” right? If you look under the
covers, by many metrics like speed and performance, the progress has
already slowed to a halt. So if we want to keep this party going, we
have to do what we’ve always been able to do, and that is to innovate.

E The working principle of the nanomotor.

So our group’s role and our group’s mission is to innovate by employing
carbon nanotubes, because we think that they can provide a path to
continue this pace. They are just like they sound. They’re tiny, hollow
tubes of carbon atoms, and their nanoscale size, that small size, gives
rise to these just outstanding electronic properties. And the science
tells us if we could employ them in computing, we could see up to a ten
times improvement in performance. It’s like skipping through several
technology generations in just one step.

F Possible fields of application in the future.

So there we have it. We have this really important problem and we have
what is basically the ideal solution. The science is screaming at us,
“This is what you should be doing to solve your problem.” So, all right,
let’s get started, let’s do this. But you just run right back into that
double-edged sword. This “ideal solution” contains a material that’s
impossible to work with. I’d have to arrange billions of them just to
make one single computer chip. It’s that same conundrum, it’s like this
undying problem.

钦定的八个段子都尚未鲜明的段落宗旨句(二零零五年理工科类A/B级归纳大体题中多个内定段落都未有鲜明性段落宗旨句),考生方可经过通读钦点段落的大要来总结出段落大旨,
或倚靠一些灵光的答题技术鲜明段落核心。以确认段落第4段的段落大旨为例剖判答题技巧:

At this point, we said, “Let’s just stop. Let’s not go down that same
road. Let’s just figure out what’s missing. What are we not dealing
with? What are we not doing that needs to be done?” It’s like in “The
Godfather,” right? When Fredo betrays his brother Michael, we all know
what needs to be done. Fredo’s got to go.

Author

发表评论

电子邮件地址不会被公开。 必填项已用*标注